TRANE UNIVERSITY™

IPAK I &II

IPAK III

Legacy IPAK I&II with Symbio 800

Human Interface

TRANE UNIVERSITY[™]

VVDA	Supply Fan ON		
Occupied	ed Cool 4 Alarm		
Status Set Setup Cont Previous 2 Next 3	Enus points Diagnosti cs igurati Service Mode Custom Auto Cancel Stop		
TRANE			
Legacy IPAK			

- discontinued

Fans

TRANE UNIVERSITY™

IPAK I &II

Heat Section

Legacy IPAK – discontinued

Legacy IPAK w/Symbio 800

Siemens Controller

IPAK III

Supply Fan VFD

OA Damper

IPAK I &II

OA Damper

IPAK III

IPAK III & Legacy w/Symbio 800

Refrigerations Controls

Legacy IPAK - discontinued

A2L & R454b Refrigerant

- Mildly Flammable Classification
- Lower Global Warming Potential (GWP)

• A2L

- $\underline{A} = \text{LOWEST TOXICITY}$
- <u>2L</u> = MILDLY FLAMMABLE
- R-454
 - Trane's choice for A2L
 - R-454B = 68.9% R-32 and 31.1%
 R-1234yf

P/T Differences

- R454 pressure is slightly lower than R410
- Pay attention to glide

50°F saturated temp: 135 PSIG (R454B) 145 PSIG (R410A)

(psig)

Refrigerant Pressure Curve Comparison

- R-454b
- 95° ambient
- 126 psig low pressure
- 400 psig high pressure

COOLING CYCLE PRESSURE CURVE 90 Ton Std Capacity

Discharge pressure: R-454b < R410a by 25 psig

TRANE UNIVERSITYTM

Leak Detection Sensor

- Operational Voltage
 - Range 18-32VAC, 24VDC ±10%
- Modbus Communications
 - Default Modbus address is 50
- Dry Contact
- Alarm Threshold Trigger Value 15% LFL
- Alarm Threshold Reset Value 10% LFL

Leak Detection Sensor- Mitigation Sequence

- Supply fans activated to deliver circulation airflow
- VAV Boxes fully opened
- Compressors disabled
- Additional mechanical ventilation activated
- Mitigation will continue until refrigerant has not been detected for five minutes.

- Access Points
 - Reclaim/Charge/Evacuation sequence button accessible via TD7 or Tracer TU.
- Reclaim/Charge Sequence
 - Expedites process, reducing manual execution by technicians.
 - Separate button for each refrigeration circuit.

- Evacuation Sequence
 - Allows circuit to stay open longer for complete evacuation
 - Single button per circuit on TD7 & TU to open all valves
 - EXV, Reheat, Cooling

- Access Points
 - Reclaim/Charge/Evacuation sequence button accessible via TD7 or Tracer TU.
- Reclaim/Charge Sequence
 - Expedites process, reducing manual execution by technicians.
 - Separate button for each refrigeration circuit.

	Running	Discharge Air Temperature Active 65.0 °F		Auto	Stop
			Refrigerant	Evacuation/Charge	e Ckt1 👭
Current Value: Enable					
Disable					
Enable					Cancel
Top Level Mode Running	To	p Level Mode Ckt1 copped		Top Level Mode Ckt2 Running	
🗼 Alarms	🗎 Repor	ts 🛛 🖾 Da	ata Graphs	+++ Settings	ļ

Component List

Component	Command
EXV Control Override Evap 1A	50%
EXV Control Override Evap 1B	50%
EXV Control Override Evap 2A	50%
EXV Control Override Evap 2B	50%
Hot Gas Byp Valve Manual Override Ckt1	50%
Condenser Reheat Manual Override Ckt1	50%
Reheat Pumpout Relay Manual Override	Open

* Reheat Pumpout Relay cannot be commanded Off during Evacuation/Charge Operation.

- Evacuation/Charge Operation
 - Compressor Minimum On Time will be honored if compressor is running
 - Compressor operation
 locked out

TRANE

- Once active
 - The function will persist through power off-on cycles
 - Valves placed into manual override with this function can only be removed through this function.

- Manual Override Timer
 - No timer countdown
 - Doesn't clear evacuation function
- Evacuation/Charge can only be cleared by disabling the function.

All trademarks referenced in this document are the trademarks of their respective owners. | © Trane. All Rights Reserved.

Supply Fan VFD programming

- VFD is factory programmed
 - Unit nameplate shows Max/Min Hz

MODEL NUMBER SERIAL NU MBER	RF0603442AAAA3M1F2310 C18123456	00100 VFD		
EVAP FAN VFD MAX HZ	3-02	Minimum Reference (HZ)	Per Unit Nameplate - Evap Fan VFD Min Hz	
		3-03	Maximun Reference (HZ)	Per Unit Nameplate - Evap Fan VFD Max Hz

• Fan curve shows RPM

4 Pole motor = 1750 RPM @ 60 Hz 55 Hz / 60 Hz = 0.92 0.92 X 1750 = 1604 RPM

IPAK 1 DDP Fan VFD programming

- VFD is factory programmed
 - Unit nameplate shows Max/Min Hz

• IPAK 1 Model Number shows selected RPM

Digit 15 — Supply Air Fan RPM G = 1600 RPM **H** = 1700 RPM **J** = 1800 RPM

4 Pole motor = 1750 RPM @ 60 Hz 55 Hz / 60 Hz = 0.92 0.92 X 1750 = 1604 RPM

LET'S GO BEYOND™

Forward Curved Fan

Forward Curved Fan

- Used on IPAK1 20 to 75 ton
 units
- Single fan drive assembly

Forward Curve Fan Selection

- Fan Selection
 - CFM needed versus Total
 Static Pressure
 - Return ducting
 - Curb
 - Filters
 - Evaporator coil
 - Heater
 - Supply ducting

Forward Curve Fan Selection

- Example
 - 11,000 CFM needed
 - Pressure drops add up to 3.25"
 - Select 1300 RPM fan
 - Select 15 HP motor

Brake Horsepower

- To Determine BHP without a VFD
 - Measure fan motor amp draw
 - Record nameplate amps
 - Record nameplate HP
 - Calculate BHP by using the following formula
 - BHP = (Actual Amps ÷ FLA) x HP

BHP Example


```
Actual measured amps = 13
Nameplate Full Load Amps (FLA) = 18
Nominal Horsepower = 10HP
BHP = (Actual Amps ÷ FLA) x Nominal HP
BHP = (13 \div 18) \times 10
BHP = .7222 \times 10
BHP = 7.2
```

TR200 Status Screen

- To Determine BHP with a VFD
 - With fan running at 60 Hz
 - Read Brake HP on VFD
 display

Forward Curve Fan - Field Measurement

- Airflow measurement Forward Curve Fan
 - Determine BHP
 - 10.0 BHP
 - Determine Blower RPM
 - 1290
 - Plot Points on Fan Curve
 - At Intersection Read Down to CFM (Accurate to +/- 5%)

Forward Curve Fan - Field Adjustment

- Airflow measurement
 Forward Curve Fan
 - Change sheaves to new RPM
 - 1400 RPM
 - Measure new BHP
 - Plot Points on Fan Curve
 - At Intersection Read Down to CFM (Accurate to +/- 5%)

LET'S GO BEYOND[™]

Airfoil Fan

Airfoil Fan

- Used On 90 To 162 Ton Units
 - Intellipak I
 - Two Independent fan drive assemblies
 - Intellipak II
 - One single fan drive
 - Better efficiency at higher static pressures

Airfoil Fan

- Air flow measurement Airfoil Fan
 - BHP lines are in parallel with RPM lines, so airflow cannot be determined by plotting
 - Must use another method to measure airflow.
 - However, if airflow is known, changes to airflow can be plotted

Airfoil Fan Airflow Measurement

- Can use evaporator pressure drop tables located in the IOM
 - Tables are based on unit tonnage
- Two tables
 - Wet coil
 - Dry coil
- Using a manometer, measure the evaporator pressure drop
 - Plot on the appropriate chart for coil conditions
 - Where pressure drop line intersects unit tonnage
 - Read straight down to obtain airflow in CFM

Airfoil Fan Airflow Measurement

Wet Evaporator Airside Pressure Drop at 0.075 lb/cu.ft. 20-75 Ton

VFD Wiring Without Bypass

VFD Wiring With Bypass

Exhaust Fan IPAK I and II

- Exhaust Fan
 - With or without StatiTrac
 - Relieve excess building pressure
- IntelliPak I with StatiTrac
 - VFD with barometric damper
 - 1 Speed fan with motorized damper
- IntelliPak II with StatiTrac
 - VFD and motorized damper

IntelliPak I Fresh Air Intake and Exhaust

IntelliPak II Fresh Air Section

- Two fresh air inlets
- Two actuators
 - Each linked to one set of return dampers and one set of fresh air dampers
 - Left and right when looking at the Human Interface
 - Traq inlets report left airflow, right airflow, and combined airflow
 - Each side has a measuring station and pressure transducer
 - Two inlets on each side

TRANE UNIVERSITY[™]

IPAK 1 and II Return Fan

- Basic operation
 - On when supply is running
 - Purpose of the return fan is to overcome the pressure drop of the return duct
 - The return fan doubles as the exhaust fan with StatiTrac

TRANE UNIVERSITYTM

Unit Layout With Return Fan Intellipak I

Outdoor air

Unit Layout With Return Fan Intellipak II

Return Plenum Pressure Tubing

Return Plenum Pressure Tubing

Basic IntelliPak Return Fan Sequence

- Supply fan speeds up
 - Return plenum pressure drops
 - Supply fan holds
 - Return fan speeds up
- Supply fan slows down
 - Return plenum pressure increases
 - Supply fan holds
 - Return fan slows down
- Return fan seeks to maintain a target setpoint

Return Plenum Setpoint

- The target setpoint is internally calculated
 - The Return plenum max setpoint is field set, initially at 0.8"wc
 - The Max setpoint is the return plenum pressure at which the Exhaust damper pressure drop is overcome at 100% exhaust mode
- The target setpoint varies from -0.05"wc to the Max Setpoint depending on Space Pressure TRANE UNIVERSITY™

Stopped	Space Temperature Active	Auto
		Service Settings Algorithm Tuning Parameters
Return Fan Minimum Capacity Limit Enable Off	Space Static Pressure Low Limit Setpoint -0.20 IWC	
Return Plenum Static Pressure Deadband 0.10 IWC	Return Plenum Static Press Integral Time 3.3 Sec	Return Plenum Static Pressure Prop Gain 20.0
Return Plenum Static Pressure Min Setpt 0.10 IWC	Return Plenum Static Pressure Max Setpt 0.80 IWC	Return Plenum Static Press Softload Time 15 Sec
		Page 16 of 16
🜲 Alarms 📑 Re	eports 🛛 🗠 Data Grap	hs III Settings

TRANE UNIVERSITY™

Return Plenum Pressure Target setpoint

- Initially, the target setpoint is -0.05"
- With high Supply VFD and Fresh Air % and/or high building pressure, the target setpoint will vary from -0.05" to + 0.8"
- With low building pressure, the target setpoint will drop to -0.05"
 - This is done to ensure that the mixing box (fresh air) is always at a negative pressure

TRAQ Fresh Air Measurement

TRANE UNIVERSITY[™]

Intellipak I Fan Shipping Brackets

- Remove shipping tie down bolt and washer
 - 4 20 to 30 ton
 - 6 40 to 55 ton
 - 8 60 to 75 ton
- Leave shipping channels in place
 - Verify spring height is 0.1" to 0.2" above shipping channel

Do NOT remove electrical ground wire strap between isolation base and unit base.

IntelliPak I Fan Adjustment

- Back off all spring isolator jam nuts on top of the assembly
 - Adjusting one spring effects
 all others
- Turn adjustment bolt
 - Each change effects all other springs.
 - Clockwise raises
 - Counter-clockwise lowers
 - When correctly adjusted retighten jam nuts and remove shipping channels

Intellipak II Fan Shipping Brackets

 Spring isolators for the supply and/or exhaust fan are shipped with the isolator adjusting bolt backed out.
 Field adjustment is required for proper operation

Do NOT remove electrical ground wire strap between isolation base and unit base.

Intellipak II Fan Shipping Brackets

- To adjust the spring isolators
 - Remove and discard the shipping tie down bolts
 - Leave the shipping channels in place
 - Tighten the leveling bolts to adjust fan assembly to 1/4" above each shipping channel
- Secure the lock nut on each isolator
- Remove shipping channels

Energy Recovery Wheel

- Requirements
 - Economizer w/ Comparative Enthalpy
 - Exhaust Fan
 - Operational Supply Air Temperature Sensor
 - Up-flow Return
 - Return Duct Burglar Bars
 Automatically Included
- Wheel is segmented to facilitate service

ERW Design and Operation

- Energy Recovery is active when:
 - The supply and exhaust fans are on and there is an active demand for heating or cooling
 - Sensors are valid to determine activation conditions
 - Indoor and Outdoor Temperature/Enthalpy conditions are favorable for energy recovery
 - Cooling If OA enthalpy is 3btu/lb greater than RA enthalpy enable wheel to remove energy from incoming OA
 - Heating If OA is 5°F less than RA enable wheel to recover energy from exhaust air

- Energy Recovery is disabled when
 - Indoor vs. Outdoor Temperature/Enthalpy conditions are not favorable
 - Economizer-only cooling mode is active
 - Outside Air Temperature sensor failure
 - Supply Air Temperature sensor failure
- When Energy Recover is disabled
 - Stop the wheel
 - Bypass dampers are requested full open

- Wheel Proving
 - After 5 minutes of wheel operation verify energy transfer by comparing leaving recovery air temp to return air temp
 - There should be a greater than 3°F difference between the two temperatures being monitored
 - If the temperature difference is not greater than 3°F
 - Set wheel off and dampers to closed
 - Set manual diagnostic reset
 - The above proving function will be suspended if there is less than a 13°F difference between return air and outside air

Energy Recovery Control Options

Energy Recovery Wheel On

Energy Recovery Wheel Off Economizing

Energy Recovery Wheel Off Not Economizing

Energy Recovery Wheel On Frost Prevention

Intellipak I Staged Heating

IntelliPak 1 Midco Burner

- 2-Stage
- Modulating burner

Digit 9 — Heating Capacity

H = High Heat — 2-Stage

- **K** = Low Heat Ultra Modulating
- L = Low Heat 2-Stage
- M = Low Heat Modulating
- 0 = No Heat
- **P** = High Heat Modulating
- **T** = High Heat Ultra Modulating

Nominal		Two Stage Burner	Modulating Burner		
Burner Size	Stage 1/Stage 2	Modulating Input Range	Ultra Mod Input Range		
	235 MBH	117/ 235	n/a	n/a	
	350 MBH	175/ 350	n/a	n/a	
	500 MBH	250/ 500	125 - 500	36 - 500	
	800 MBH	400/ 800	125 - 800	45 - 800	
	850 MBH	425/ 850	125 - 850	48 - 850	
TRANE UNIVERSITY	1000 MBH	500/ 1000	125 - 1000	48 - 1000	

TRANE UNIVERSITY™

Condensate Drain Gas Furnace

- 3⁄4″CPVC
- Stubbed through vertical support
- Important to pipe to proper drain
- Connect compartment drain line
- Do installations comply with local codes?

Profile Burner

Siemens Ignition Control

Siemens Ignition Control

Modbus Communicated

Staged & Modulating Systems Start-Up Procedures

Tools Needed For Startup

- Pressure gauges
 - Incoming gas pressure
 - Manifold gas pressure
- Flue analyzer
 - CO2
 - 02
 - CO
 - Flue temperature
- Hand tools
- Voltmeter

Nat Gas

Run

Recommended manifold pressures during furnace operation

Furnace Stage	MBH	Firing Rate	Manifold Pressures
High Fire	235	100%	1.4-1.6
Low Fire	117	50%	0.39
High Fire	350	100%	1.2-1.3
Low Fire	175	50%	0.37
High Fire	500	100%	2.3-2.6
Low Fire	250	50%	0.72 (staged), 0.22 (mod)

Manifold pressures are given in inches w.c.

High fire manifold pressure is adjustable on all heaters

Low fire manifold pressure is non-adjustable on 235 MBH and 350 MBH heaters.

Recommended manifold pressures during furnace operation

Furnace Stage	MBH	Firing Rate	Manifold Pressures
High Fire	800	100%	1.83-1.87
Low Fire	500	50%	0.49 (staged) 0.04 (mod)
High Fire	850	100%	1.8-2.1
Low Fire	500	59%	0.45 (staged) 0.05 (mod)
High Fire	1000	100%	2.5-2.7
Low Fire	500	50%	0.68 (staged) 0.05 (mod)

Manifold pressures are given in inches w.c.

High fire manifold pressure is adjustable on all heaters

Low fire manifold pressure is non-adjustable on 235 MBH and 350 MBH heaters.

Factory Settings 2 Stage

Natural Gas							
Burner Size	Low Fire		High Fire		Shutter Setting	Ratio Regulator	
	VDC input	P0	P1	VDC input	P2		Turns
235 MBH 2-stg	n/a	203	203	10	330	0.5	2.5 – 3 CW
350 MBH 2-stg	n/a	213	213	10	350	2-2.5	3.5 – 4 CW
500 MBH 2-stg	n/a	270	270	10	480	1.5-2	3.5 – 4 CW
800 MBH 2-stg	n/a	250	250	10	475	4	
850 MBH 2-stg	n/a	251	251	10	460	4	3.5 – 4 CW
1000 MBH 2-stg	n/a	280	280	10	535	3.5	3.5 CW

Natural Gas							
Burner Size	Low Fire		High Fire		Shutter Setting	Ratio Regulator	
	VDC input	P0	P1	VDC input	P2		Turns
500 MBH Mod	0	200	185	10	480	1.5-2	3.5 – 4 CW
800 MBH Mod	0	200	120	10	475	4	3.5 – 4 CW
850 MBH Mod	0	200	113	10	460	4	3.5 CW
1000 MBH Mod	0	200	113	10	535	3.5	1.75 – 2 CW

Manual Override Settings Startup

- Navigate to Manual Override
 Screen
- Set fan speed to 100%
- Set Modulating Percentage to 100% and/or enable 2nd stage
- Press the Auto button
- Ensure Gas Regulator outlet pressure is 7"w.c

Stopped	Space Ter 64.0 °F	mperature Active	Auto	Stop
		Gas Heat Sta	iged Manual O	verride 👭
Current Value: Auto Auto	Num Heat Stages Running Status O	Change value to:		0
Manual		Apply	Save	Cancel
Heating Capacity Primar 0.0%	y Status Supply Fan Spee 0.0%	d Status		
Alarms	Reports	🖂 Data Graphs	+++ Settings	;

Manual Override Settings

- Navigate to Gas Heat Manual Override Screen
- Enable 1st stage or set Mod Gas to 1%

Stoppe	ed	Space Temperature Active 64.0 °F	Auto	Stop
		Gas He	eat Staged Manual	Override
Current Value: Auto Auto Manual	Num Heat Stages R Status O	Change value to:	Save	0 Cancel
Heating Capacity Prima 0.0%	ary Status Supp 0.09	ly Fan Speed Status ∕o		
Alarms	🖹 Reports	🗠 Data Grap	hs +++ Settir	ngs

Burner Setup O2 Low Fire

- If adjustment is needed
 - Adjust the ratio regulator
 - CW is more gas
 - Higher CO₂
 - Less O₂
 - CCW is less gas
 - Lower CO₂
 - More O₂

Burner Setup CO₂ High Fire

- Set User Interface to 100%
- Allow to run for 10 minutes
- If adjustment is needed
 - Check air damper
 - Close to increase CO₂

Gas Pressures

- Incoming pressure
 - 7.0" to 14.0"

Gas Pressures

- Manifold pressures
 - Low fire
 - .39" to .72"
 - High fire
 - 1.4" to 2.7"

TRANE UNIVERSITY™

Low Fire Manifold Pressure

- Navigate to the Gas Heat
 Manual Override Screen
- Set the percentage to 1%
 - Staged to 1st stage

Low Fire Manifold Pressure

- Adjust motor speed if needed
 - Siemens Ignition Controller
 - P0 ignition speed
 - P1 low fire speed
- Multiply P0/P1 value by 10 for RPM

High Fire Manifold Pressure

- Set the modulating percentage to 100% or 2nd stage
- Adjust motor speed if needed
- Siemens Ignition Control
 - P2 high fire speed

TRANE UNIVERS

• Multiply P2 value by 10 for RPM

Stopped	5pace 7 64.0 °	Femperature Active PF	Auto	Stop
		Gas Heat S	Staged Manual O	verride 井
Current Value: Auto Auto	Num Heat Stages Running Status 0	Change value to:		0
Manual		Apply	Save	Cancel
Heating Capacity Primar 0.0%	ry Status Supply Fan Sp 0.0%	eed Status		
▲ Alarms	Reports	🗷 Data Graphs	+++ Settings	; Jp

IntelliPak I Ultra Modulating

IntelliPak I VA Burner

- IPAK I Ultra Modulating Burner
- IPAK II 2 Stage and Modulating Burner
 - No Ultra Mod for IPAK II

Nominal	Two Stage Burner	Modulating Burner	
Size	Stage 1/Stage 2	Modulating Input Range	Ultra Mod Input Range
235 MBH	117/ 235	n/a	n/a
350 MBH	175/ 350	n/a	n/a
500 MBH	250/ 500	125 - 500	36 - 500
800 MBH	400/ 800	125 - 800	45 - 800
850 MBH	425/ 850	125 - 850	48 - 850
1000 MBH	500/ 1000	125 - 1000	48 - 1000

IntelliPak I VA Burner

Combustion Blower

- ECM
- Low fire
 - 10% EBM, 15% Fasco
- High fire
 - 500 MBH 41% EBM & Fasco
 - 800 MBH 48% EBM, 47% Fasco
 - 850 MBH 50% EBM, 49% Fasco
 - 1000 MBH 72% EBM, 55% Fasco

Ratio Regulator

- Combustion pressure to manifold pressure ratio
- Spring pressure adjustment made during low-fire setup

Adjustment screw (under cap) for manifold pressure adjustment during low-fire and mid-fire pressure adjustment only

Combustion Proving Switches

- High Pressure
 - Closes at 3.0"
 - Closed during Purge cycle
 then bypassed
- Low Pressure
 - Closes at 0.05"
 - Closed whenever combustion blower is running
- Piped in parallel
- Wired in series

TRANE UNIVERSITY™

Motor Control

• RTC Solutions

RELAY

24VAC

• Model SCEBM-2

RTC

Motor Control – ECM Programming

Programming is done at the factory but should be verified

MBH	Fhi setpoint
500	41%
800	48%
850	50%
1000	72%

Note: There are other parameters for use with a temperature sensor These settings do not matter

Motor Control - Combustion Blower

- High Fire (100%) manifold pressure is based on the Fhi setting
- Talk to Tech Support before adjusting

MBH	Fhi setpoint	Manifold "W.C.
500	41%	2.6" to 2.9"
800	48%	1.3" to 1.6"
850	50%	1.6" to 1.9"
1000	72%	2.1" to 2.4"

Burner setup

VA Burner Engineering Bulletin

Engineering Bulletin

IntelliPak[™] 1 with Symbio[™] Controls for Ultra-modulating Gas Furnaces and IntelliPak[™] 2 with Symbio[™] Controls for 2-stage and Modulating Gas Furnaces Product Codes: 383, 393, and 0506

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

TRANE

March 2023 RT-PRB039A-EN

Measuring Gas Pressure

 During setup you will be measuring pressure at each of these locations

Inlet and Regulator Gas Pressure

TRANE UNIVERSITY™

Prepare Unit for Startup

- Feed the pilot flame
 - Open manual shutoff valve near gas regulator
 - Ensure manifold gas manual shutoff valve is closed

Manual Override Settings

- Turn supply fan on
- Set fan speed to 100%
- Set Gas Heat Stage to 1
- Set Gas Heat to 1%
- Press Auto

Stopp	ped	Space Temperature Active 64.0 °F	Auto	Stop	
		Gas H	eat Staged Manual	Override	
Current Value: Auto Auto Manual	Num Heat Stages R Status O	unning Change value to:		0	
Apply Save Can Heating Capacity Primary Status Supply Fan Speed Status 0.0%					
Alarms	Reports	🖾 Data Grap	ohs +++ Settir	ngs	

- After initial purge and pilot has been lit, Measure pilot gas pressure at pilot gas pressure tap
- Adjust pilot gas regulator to 3.0-3.5" w.c.
- Once pilot flame is established, slowly open manifold gas manual shutoff valve unit.
 - Burner lights at low fire
 - Allow system to operate for 10 minutes

Manual Override Settings Startup

- Navigate to Gas Heat Manual Override Screen
- Set Modulating Percentage to 100% and/or enable 2nd stage
- Ensure Gas Regulator outlet pressure is 5.8-6.2" w.c.

Stopped	Space Ten 64.0 °F	nperature Active	Auto Stop		
		Gas Heat Stag	ed Manual Override 井		
Current Value: Auto Auto Manual	Num Heat Stages Running Status O	Change value to:	0 ave Cancel		
Heating Capacity Primary Status Supply Fan Speed Status 0.0%					
Alarms	Reports	🗷 Data Graphs	+# Settings		

Low Fire Setup

TRANE UNIVERSITY™

Low Fire Setup

High Fire Setup

- Gas Heat Manual Override
 - Set Mod Gas 100%
 - Manifold Pressure
 - Adjust by Fhi Setpoint
 - Combustion gases
 - Adjust by air damper
 - O2 3.0% 5.0%
 - CO2 8.5% 10.0%
 - CO <100ppm

Verify: Inlet pressure: 7.0" to 14.0" Main Regulator Pressure: 6.0" Manifold Pressure:

MBH	Fhi setpoint
500	2.6" to 2.9"
800	1.3" to 1.6"
850	1.6" to 1.9"
1000	2.1" to 2.4"

If O₂ is too high or too low adjust the combustion damper

Recheck Low Fire Values

- Set Mod Gas to 1%
- Allow system to operate for 10 minutes
- Recheck O₂ and CO₂ values

All trademarks referenced in this document are the trademarks of their respective owners. | © Trane. All Rights Reserved.